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This paper studies optimal information and optimal algorithms in Hilbert space
for an n-dimensional average case model. The error in approximating a linear
operator is the average of some error criterion E with respect to an orthogonally
invariant measure. The orthogonally invariant measures are characterized and the
problem of best approximation is solved for a wide range of error criteria E. In
addition it is shown that adapt ion does not help, © 1990 Academic Press, Inc.

1. INTRODUCTION

This paper is concerned with the general problem of estimating the
action of a linear bounded operator A on a real, separable Hilbert space
Yl' when only finite information is available. Here information is provided
by a map N from Yl' into the space IR n of fixed finite dimension n. Knowing
Nj, f E Yl', one seeks, the best recovery of Af by means of an algorithm <p,
that is, a map <p: W --+ Ye. In other words the difference A - <pN should be
as small as possible in a specified sense.

For a worst case error criterion this setup has been examined in [4, 5,
8-10] and others. Here we relate to an average error criterion as in [6-8,
12-16]. Assuming j.l to be a Borel probability measure on Yl' with mean
zero and finite second moment J.Jf' IIfl1 2 dj.l(f), the error to be minimized
IS

e( <p, N) =LE(Af - <pNf) dJ1(f) (1)

for some function E: Ye --+ IR + = [0, 00 [. The classical choice for E is
E(f) = IIf1l 2

, which constitutes the average squared error. But also the
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probabilistic or hit-and-miss criterion conforms to this framework if we
choose E(f) = 1[,,00[(11/11).

It is the striking result of [14J (see also [6, 7, 13, 15, 16J) that for
average squared error and a certain class of "orthogonally
measures fl adaptive linear information is not superior to non-adaptive
linear information. For such fl, possessing a high degree of spatial sym­
metry, the minimal error e(cp, N) can be obtained even within the class
non-adaptive linear information operators N and corresponding
spline algorithms cp.

Given the implications of this result it becomes of interest to determine
its precise range of validity, i.e., to determine which measures fl are
orthogonally invariant. Examples from [14] are Gaussian measures in
finite dimensions, measures fl absolutely continuous with respect to
Lebesgue measure m so that the Radon-Nikodym derivative dfl/dm is
tion invariant in a suitably perturbed inner product. It turns out that these
examples are quite characteristic. Denote by C the covariance operator of
fl and assume that the range of C is infinite dimensional. In that case f.1
orthogonally invariant if and only if it has a representation

fl =rc

fltC dv(t),

°
where fl K is the Gaussian measure on :It with mean zero and covariance
operator K and v is a .Borel probability measure on iR +. Further the
representation (2) is uniquely determined under the condition 1 = fo t
in which case we denote the measure fl by fl"c. One may note from (2) that
the projection of fl"c onto any finite dimensional subspace of :It invariably
is absolutely continuous w.r.t. Lebesgue measure.

The error criterion (1) has a simple probabilistic interpretation. When
X is a second order random variable taking values in :It and fl is
induced distribution on :It the error e(cp, N) is the expected value of
E((A - cpN)X). Of course Gaussian measures fl arise from Gaussian
variables X. But suppose that X is in fact an instance, say Xu of a
stochastic process {X,L?>o' where each Xl has the distribution fliC' If the
observation time T is subject to noise it may differ from its nominal value
T = 1, transforming the variable X = Xl into X = X T, where X T(w) =
(XT(W»)(W) for each outcome w. Under the hypothesis of statistical
pendence of {Xl L?> 0 and T, the distribution of X = X T is fl"c, where v is the
distribution of T. Thus even starting in a purely Gaussian setting it is
possible to arrive naturally at measures of the type fl':::.

In Section 2 of this paper we prove the structure theorem (2) and derive
some ancillary properties of orthogonally invariant measures. As I have
recently become aware it appears from a remark in [16, p. 363J that the
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connection between orthogonally invariant measures and the "elliptically
contoured" measures [3J of the form (2) has been noted previously by
Kwapien in private communication. However, since the present approach
is quite different from the one in [3 J and the results are sharper, I feel it
is justified to present this material.

Next, in Section 3, we study the approximation problem for orthogonally
invariant measures. For a quite general class of error criteria E it is proved
that adaptive information N is not more powerful than non-adaptive infor­
mation and that for a given non-adaptive N the natural spline algorithm is
optimal. In particular there is a linear optimal algorithm. The set of E's
considered includes the average squared error and the probabilistic error.
Consequently our approach unifies and improves previous results for
orthogonally invariant measures and the squared error [12, 14, 15J and
Gaussian measures and more general criteria [13, 16, (6), (7)]. In addition
a number of new results and uniqueness results are obtained.

2. ORTHOGONALLY INVARIANT MEASURES

Let Yf be a real Hilbert space of finite or countable dimension. Consider
on Yf a Borel probability measure j1 with mean zero, finite second moment
fff IIfl1 2 dj1(f), and covariance operator CI' defined by

Here the Hilbert-Schmidt operators on Yf are identified with the tensor
product Yf®Yf through (fl ®f2)g=(g,fl)f2. It is assumed that CI' is
injective and that j1 is symmetric, i.e., fff F(f) d/1(f) = fff F( - 1) dj1(f).

Following Wasilkowski and Wozniakowski [14J we define the sym­
metric measure j1 to be orthogonally invariant if j1 = j1 0 Qj 1 for all f E Yf
normalized so that (CJ, f) = 1. Here Qf is the operator Qf =
2(f ® C1'1) - I which satisfies Q} = I provided (C1'1, 1) = 1.

Recall that the Fourier transform or characteristic functional P of /1 is
the function from Yf into C defined by

P(f) = Iff exp(i(g, 1)) d/1(g), f E YF,

and that P determines j1 uniquely [11, pp. 11]. For any non-zero vector g
in Yf denote by 19 the functional 19(f) = (CJ1 g, g) -1/2 (1, g), f E Yf.

PROPOSITION 2.1. For a symmetric measure /1 the following are equiva­
lent.
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(a) The measure /l is orthogonally invariant.

(b) All measures /l °I;; \ g E JIf\ {O}, are equal.

(c) There is a function g: IR + -+ IR so that

161

f E JIf.

(d) There is a twice continuously differentiable, positive definite fimc­
tion g /l: IR -+ IR such that

and

g~(O) = 0, g~(O) = -1.

Further if /l is orthogonally invariant and if for some function g: IR + -+ IR
and self-adjoint operator C it holds that fl(f) = g( (Cf, f) 1/2), f E JIf, then
there is a constant y > 0 such that C/l = y2C and g(s) = g /l( yS), S~ O.

Proof (a) => (c). Assume (C/lfl' fl) = (C/lf2' f2)' Let g be the vector
g = (C/l(fl +f2),11 +12)-1/2(fl +12)' As (C/l(fl +12),11 +12)=
2((C/lfl,fd + (C/l11,f2)) one may verify that Qifl =f2' Consequently
fl(fl)=/loQ;;I(!,) = fl(Qifd=fl(f2)'

(c) => (a). It is straightforward to verify the relation Qr C jl Q! = C'l'
Thus

/"-..
/l ° Qi 1(g) = (l(Q! g)

= g((CjlQ!g, Q!g)1/2)

= g((Cjlg, g)1/2)

=fl(g), gEJIf.

(c) ¢> (b). This equivalence is seen from
./'-...
/lol;;I(S)=P(s(Cjlg, g)-1/2 g), SE JR. (3)

(c) => (d). Denote the common value of /l 0 I;; 1 by ji. It is apparent
from (3) that ji(s) = g(s), S ~ O. Now (d) is simply the statement that gjl = ;i
is the transform of a probability measure with mean zero and second
moment one.

To prove the final statement of the proposition asSume that

1 E JIf.

Consider any non-zero vector g in JIf and put rx 2= (Cjl g, g), /32 = (Cg,g).
Then P(sg) = g/l(!slrx) = g(ls! /3). If /3 = 0 then P(IR· g) = {1} and /l is con-

640/61/2-3
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centrated on the orthogonal complement of g, contradicting the standing
assumption that CI' is injective. Thus g(s) = g1'('Is), s;?: 0, holds with 'I =
a/po Since the identity giy .)= g can be true for at most one value of 'I it
follows that

g E:if.

The equality CI' = y2C is seen by polarization. I
As stated in the introduction we denote by flc the Gaussian measure on

:if with mean zero and covariance operator C. Similarly fl"c denotes the
measure given by

for all Borel sets flJ.

THEOREM 2.2. Let fl be an orthogonally invariant measure on an irifinite
dimensional, separable real Hilbert space :if. Then there is a Borel proba­
bility measure v on IR + with 1 = j;;o t dv(t) and positive nuclear operator
C = CI' such that fl = fl "c. The pair (C, v) is unique.

Proof By the proposition we can express {l as {l(f) = gl'((CI'f, f)1/2),
f E:if. Since gl' is continuous, {l is positive definite, and CI' has dense range
it follows that the function g1'( Ilfll) is positive definite on :if. Hence by a
famous theorem of Schoenberg [2, p. 152] the function giJt) for t;?:°
is the Laplace transform 2?v of a Borel probability measure v on IR +. For
convenience we express this as

gl'(t) = f) exp( - t2s/2) dv(s),

In turn (4) implies

t ;?: 0. (4)

f
co~

= fltC (f) dv(t),
o fl

f E:if.

Hence {l equals the transform of the well defined mixed measure fl"c and
the two must be equal. Since "

clearly 1 = j;;o t dv(t).
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If P = P~ is some other representation one finds

163

fl(f) = gp((Cpj, /)1/2) = g«Cj, 1)1/2),

where g(fi) = (2" v)(I) and gp(fi) = (2" v)( t), t ~ 0. The desired idtm­
tification (v, C) = (v, CiJ) follows from combining g"(O) = - $;' t dv(t) = -1
with the proposition above and the injectivity of the Laplace transform. I

It is apparent that the projection pop -1 of P = p"c onto a finite dimen­
sional subspace of :Jl' is absolutely continuous w.r.t. Lebesgue measure m
with a Radon-Nikodym derivative d(p 0 p -1 )Idm which is C{joo outside zero.
If v vanishes in a neighbourhood of zero d(p 0 P -1 )Idm even belongs to the
Schwartz space [1'. In contrast, for any finite dimension, normalized
integration over the boundary of the unit ball is an orthogonally invariant
measure singular w.r.t. Lebesgue measure. In dimension one this is P=
~«()1 +6_ 1) with transform j1(t)=cos(t)=COS(W)I/2) which is not even
positive.

The two corollaries to Theorem 2.2 and Proposition 2.1 demonstrate
that the Gaussian measures have properties which are quite distinct from
those of a general orthogonally invariant measure.

COROLLARY 2.3. If an orthogonally invariant measure P is a product
measure with respect to a non-trivial orthogonal decomposition Yt =

Yli EB ~, then fi is a Gaussian measure.

Proof Choose non-zero vectors Ii in Yt; and put f3 ij = (Clifi' fJ. Denote
by Gp the function G/ t) = g p(Jt\ t ~ 0, which by l'Hospital's rule
satisfies

lim G~(t) = -~.
t.....-+O+

(5)

By hypothesis fl(Adl + ).2/2) = fl().dd fl()'z/2). Consequently, as f312 is
readily shown to be zero,

(6)

In combination with (5) the functional equation (6) implies Gp(t) =
exp( - tI2), t ~ 0. Thus {l = fie· I

"
For any measure). (on IR + ) and positive real number rx denote by )." the

measure

f F(x) d)''''(x) =f F(rxx) d)'(x).

COROLLARY 2.4. Let P be the convolution measure P = PI * /12' where

Pi = P"ci •
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Then J1 is orthogonally invariant only if either J1i are both Gaussian or the
covariances Ci are proportional.

Proof The proof is based on (b) of Proposition 2.1. Since CI' =C1 +C2

is known we may set out to determine when J1 0 I; 1, g E Jf\{O}, are all
equal. Notation will be as in the proof of Proposition 2.1.

Now J1ol;1 = (J11 01 ;1) * (J12 01;1) and for

a= (C 1g, g)I/2 «C1+ C2) g, g)-1/2

one finds that

-------- --- ---------J1 0 I ;1(S) = (J11 0 1;1 )(s)· (J12 0 I ;1)(S)

----- --------------= (iiI Y (s) . (ii2)(l- a
2

)1/2 (s)
--~.-.- -_.~-

= fil(aS) fi2«(l- a2)1/2 S)

Thus the requirement is that the functions

(7)

should be independent of the parameter a as it ranges over the closure
1= K - of the set

K = {IIC ~/2gll ·11(C1+ C2)1/2 gll-1 I g E Jf\{O}}.

But I is precisely the set {II C ~/2(C1+ C2 ) -1/2II1II1I11 = 1} - which in turn
is identical to the square root W 1

/
2 of the numerical range

In particular, I is an interval.
In case I, and hence W, is a singleton set we find by polarization that the

C i are proportional. Otherwise we may differentiate (7) with respect to a
in the interior of I to obtain

(1- a2)1/2 g~(as) g2«(l- a2)1/2 s)

= ag1(as) g~«1- a2)1/2 s), a E I, s E lit

Since gi are everywhere positive this can be rewritten as

d
(1-a2) ds (In gl(as))

d=a2 ds (In g2«1- a2)1/2 s)), a E I, s E IR.
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and consequently for any fixed a in I

g 1(as )(1- a2
) = g2(( 1- a2 )1/2 s )a2

, S E IR.

165

(8)

On comparison with (7), with the common value of ga denoted by g, this
yields

a E I, s E IR,

and it follows that the function g 1(t) equals the function exp(t2ln g( 1))
through the interval I. Since g 1(~) is the Laplace transform. of a
probability measure it has an analytic continuation to the open right half
plane. In turn g 1 has an analytic extension to the interior of a 45° cone
symmetrically including the positive real axis. Thus from uniqueness
of analytic continuation and the condition gj(O) = -1 the identity
g1 (t) = e- t2

/
2, t E IR + , follows. Hence 111' and likewise 112, are Gaussian. I

Remarks. (a) To connect Corollary 2.4 with our introductory con­
siderations regarding random variables X T> let Z be lit sum Z = X T + Ys of
two independent variables of this kind. Corollary 2.4 states that if the
covariance parameters of (XIL;, 0 and (Ys ) s;' o are not proportional then Z
has an orthogonally invariant distribution only if T and S are constants.

(b) One property, however, characteristic of Gaussian measures is
preserved for orthogonally invariant measures 11 = 11 "c. When {ej Lex: 1 and
{Ai} jex: 1 are the eigenvectors and corresponding eigenvalues of C the limit
limn~+co (1/n):LJ=1 (1,e)2/Aj still exists for 11 almost all fin :If. But it
need no longer be equal to one, 11 a.e. In fact v is equal to 11 0 P-1 and I1lc,
t E IR + , are the conditional measures for {p(f) = t}, where

can be given any value on the set of non-convergence.

3. ApPROXIMATION OF LINEAR OPERATORS

This section investigates the approximation of a linear bounded operator
A: :If -"+:If with respect to some fixed orthogonally invariant measure
11 = 11 "c. First it is necessary to introduce further definitions and notations.

When the Hilbert space :If is identified with its own dual space of
functionals, an adaptive linear information operator N: :If ~ IR" is any
map of, the fOfm Nf= (yJ7~1' where Y1 = (1, gd, Y2 = U;g2(Y1)),''''
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Yn = (f, gn(Yl' ..., Yn_ 1)), and g i: IR i - 1 -+ Yf are measurable functions for
1 ::::; i::::; n. Thus the ith point of evaluation is allowed to depend
(measurably) on the previous (i -1) outcomes. The information operator
or just information N is called non-adaptive ifthe gi are constant functions,
i.e., the points of evaluation have been chosen a priori. Given an error
functional E the error of an algorithm <p is defined by

e(cp, N) =LE(Af - cpNf) dJi(f)

and the radius of an information operator N is

r(N) = inf e( cp, N).
'P

Without essential loss of generality it is assumed that

holds for almost ally in IR n
• For Y=(Yi)7=1 in IRn of course gi(Y) means

gi(Y1, ..., Yi- d. Also for yin IR n we adopt the notation [13]

n

m(y)= L yjCgj(y)
j=l

n

O"(Y)= L gj(y)®Cgj(y)
J=l

and

8(y) = (I - O"(Y)) C(I - O"(Y))*·

The measure Ji"c is transformed by N into the measure Ji~ on IRn. This is
readily verified when the gi constantly equal suitably normalized eigenvec­
tors for C; the general case then follows from [14, Theorem 4.2]. In [13,
Theorem 3.1] it is shown that for Ji = Jic the conditional measure for
{Nf = y} is the Gaussian measure Jim(y),S(y) with mean m(y) and
covariance 8(y), i.e.,

(9)

with each Jim(y),S(y) supported on {f INf = y}. The next proposition deter­
mines the corresponding resolution of an orthogonally invariant Ji with
respect to N.
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Denote by W s the density function Ws(Y) = (2ns)~n/2 exp( -IIYI12j2s),
y E fRn, and by W V the Radon-Nikodym derivative

df.1V fW
WV(y) = dr: (y) = 0 Ws(Y) dv(s).

PROPOSITION 3.1. It holds that

where each probability measure

f.1y = WV(y) ~ I J
o

w

f.1m(y),sS(s-1/2y)Ws(Y) dv(s)

(10)

(11 )

is supported on {II Nf = y}.

Proof Application of (9) to the covariance operators C = sC and the
informations N given by gi = S -1/2gi demonstrates that

and that each f.lm(sl/2y),sS(y) is supported on {f INf = sI/ 2y }. Thus

which after reshuffling, using

Jw f F(s, y) df.1/(Y) dv(s)
o IRn

=1 fW F(S,S-I/2y ) WAy)dv(s)dy,
IRn 0

becomes (10) and (11). I
In the sequel the following very general class of error functionals is

considered. A measurable function E: £ ...... IR + is caned an allowable error
functional if each set

!JUt = {I E £ IE(f) < t}

is convex and balanced. This includes the average squared error and the
error in probability. Moreover every convex function E: £ ...... IR + with
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E(O) = 0 is allowable. We shall refer to E as a standard error function
if PJt has the form PJt = F(t) fA, where fA is a bounded, convex, open set
containing zero and F is a continuous bijection of IR +. In this case E is
given by E(f) = G(p~(f)) for G = F -1 and the continuous Minkowski
seminorm p~(f)=inf{t>OlfEtfA}. The set of standard functionals
includes in particular functions of the type E(f) = H( Ilfll).

LEMMA 3.2. Let E be an allowable error functional and let J1.c be a
Gaussian measure. Then the function

x(g) = f E(f - g) dJ1.c(f)
ff

of g in Yf! attains its minimum value at g = O. If X(O) is finite and E is a
standard functional this minimum is unique.

Proof The main tool here is the identity

(12)

Optimality of g = 0 follows from J1.g,dPJt) ~ J1.dfAt), t E IR + , which holds by
the hypothesis on PJI' cf. [13, Lemma 3.1] and [1, Theorem 1].

If conversely, X(O) = X(g) < + 00 then necessarily J1.g,dfAt) = J1.dfAt),
tE IR+. For the standard case {fAtL;;,o is equal to {tfAL;;,o. From (12) and
the symmetry of J1.c

f p~(f) dJ1.c(f) = f p~(f - g) dJ1.c(f)
ff ff

= t ~ (p~(f - g) + p~(f+ g)) dJ1.df)·

Combined with the convexity of p~ this implies

J1.c a.e. (13)

Take a sequence fn ..... 0 for which (13) bolds. Then by the continuity of p~
(PJ open), p~(g)=O, and by the faithfulness of p~ (fA bounded) g=O. I

When N is non-adaptive the constant values of S(y) and g;(y) are simply
denoted Sand gj.

THEOREM 3.3. Assume that N is non-adaptive information, J1. = J1."c is an
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orthogonally invariant measure on Yt', and E is an allowable error functionaL
Then

(a) The spline algorithm

n

cps: (yJ7~ 1 -> I YiACgi
i= 1

(14)

is an optimal algorithm. When e( cps, N) is finite and E is a standard
functional cps is a unique optimal algorithm.

(b) r(N)=SxE(f)dfl~SA*(f).

(c) When E is p-homogeneous, i.e., E(af) = lal P E(f),

Proof (a) Due to Proposition 3.1

e( cp, N) = i I E(Af - cp(y)) dflY(f) dfl~(Y), (15)
il1in X

where

Ix E(Af - cp(y)) dflY(f) = WV(y)-l (Xl Ws(y)

X Ix E(Af - cp(y)) dflm(y),ss(f) dv(s)

= WV(y)-l tXl

Ws(y)

x f E(f-(cp(y)-Am(y))
x

x dflsASA*(f) dv(s). (16)

From this and Lemma 3.2 it is clear that the algorithm cpS(y) = Am(y) (for
almost all y) has the desired properties.

(b) Just combine (15), (16), and (a).

(c) This is a consequence of the general relation
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It is seen from 3.3(c) that for E(f)= p[1l(f)P and other p-homogeneous
functions the approximation problem for J1."c is equivalent to the one for

J1.c·
Next we want to consider a restricted class of sets rJB. But before we do

so it is appropriate for us to touch on the problem of optimal information.
Denote by R n the operator

Rn = ASA* = A(I - cr) C(I - cr)* A*

and define the nth radius of the approximation problem to be

In the next proposition it is tacitly assumed that all eigenvalues of ACA *
are non-degenerate. The general case is similar but more complicated to
state.

PROPOSITION 3.4. Assume that E is a standard error functional of the
form E(f) = H( Ilfll).

Then rn= r(N), where the information N is given via the n principal eigen­
values and eigenvectors (Ai'/;) of ACA* through gi =k: 1

/
2A*fi. If N is any

information then r(N) = r(N) if and only if

Proof By 3.3(b) the value of r(N) increases when the eigenvalues of
ASA* increase. Compute

Rn=A(I-itl gl@Cgi)C(I-it Cgi Q9gi)A*

=AC(I-itl Cgi@giY A*

=AC(I-itl Cgi@gi)A*

= AC 1
/
2 (I - itl C

1
/
2g i @ C

1
/
2g i) C

1
/
2A *.

Then R n is given by

where P is the orthogonal projection onto the linear span of {C 1/2gJ7~ 1.
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The non-zero eigenvalues of Rn=(AC1/2(I_p))(AC1/2(1_p))* equal
those of

Rn = (AC 1/2(1_ P))* (AC 1/2(/ - P))

= (I-P) C 1/2A*AC 1/2(I_p).

Repeating the argument we note that the (non-zero) eigenvalues of
C 112A *A C 1/2 are {Ai};: l' Consequently a minimal set of eigenvalues for
Rn, namely {A;};:n+l' exists and is obtained if and only if

where 1/ i are the n principal eigenvectors of C 1/2A *A C 1/2. However, 1/ i are
proportional to C 1/2A *fi and (17) is equivalent to

The above proposition, which improves [13, pp. 738-741], is included at
this point mainly to emphasize that the directions in ;Yf determined by the
eigenvectors {li};:l of ACA* have a special significance. Thus prepared
the reader will hopefully admit to the relevance of the sets !1J in the
following corollaries to Theorem 3.3.

COROLLARY 3.5. Let E be the functional E(f) = G(Pf!g(f)), where f!J is
defined by

for some bounded set {a i };: 1 of positive numbers and G is a continuously
differentiable bijection of IR + . Let B be the real part of the function

00

<p(A)= n (1-2W'jaj )-1/2.
j~n+l

Then

(2 foo foo ,~r(N)=;J; 0 0 G((ts)li2)B(t)dtdv(s),

where {j denotes the Fourier transform.

Proof First we claim that

(18)
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We shan't go into the details of this. The proof is an application of the
characteristic function trick that can be found for instance in [17, pp. 66].
Now for F= G- 1

d
dt (JlsASA·(F(t)rJ8))

=~ foo 2F'(t) F(t) cOS(F(t)2 A) 8(SA) dA
n -00

= A2s- 1F'(t) F(t) 8(S-IF(t)2)

=A~ (s-IF(t)2) 8(S-IF(t)2)

and by Theorem 3.3(b)

f2 foo foo dr(N)='l/7"r 0 0 t dt(S-IF(t)2)

x 8(S-1F(t)2) dt dv(s)

=AtOO tOO G((tS)I/2) 8(t) dt dv(s).

This is (18). I

COROLLARY 3.6. For each E(f) = Pi14(f)2p it holds that

r(N) = r(N, p;:) = (- w cp(p)(O) foo sP dv(s). (19)
o

In particular
00

r(N, p~) = I Ajaj
j=n+l

and

r(N, p~) = (2 j=~+ 1 (AjaY + C=~+ 1 AjaJY) tOO S2 dv(s).

Proof From (18)

r(N, i7i) = if;. tOO tP8(t) dt tOO sP dv(s).

Here the second factor mayor may not be finite. Our objective is to deter-
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(20)

mine the value of the first factor. Since B(t) = Hcp(t) + cp( - t» it foHows
that e(t) = HcP(t) + cP( - t)). Hence

A[) tp{}(t) dt

=_l_fCO tP(cP(t) + cP(-t)) dt
~o

= _1_ Ico

IW cP(t) dt.
~ -co

When p is even this is

and we are done. For odd p (20) can be rewritten as

(-i)P Ico
~M: sgn(r) (cpP) (t) dr.

y 2n -co

The function or tempered distribution sgn has Fourier transform sgn =
( - i) .jfj;c Vp(1/t), where Vp denotes the Cauchy principal value. Thus
(20) is equal to

(_i)P+I. cp(pl(t)
hm I --dr.

n e~ 0 + ItI ?' e t
(22)

To estimate this integral we exploit the fact that z -1/2 is an analytic
function of z in the half plane {z EC IRe z> O}. Indeed z -1/2 =
(1/~) SC() co e - zx

2 dx. In turn cp is analytic in the region
{zECIImz> -y}, where y=(maxj 2Aj aj )-1 and the integral of cp(z)/z
along the contour indicated in Fig. 1 is zero for any values of G and R.

iJR

R-R
___....l- -....l--+----'L.----.,_-L.--_.:m

________1-- -h'

FIGURE 1
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Since the integral along the semicircle rR converges to zero it follows that
the limit in (22) is in fact

(-i)P+ 1 . fn <p(p)(ee ie ). .
11m ie lW,e de

1! "_0+ 0 ee

= (- W cp(Pl(O).

Finally, this expression is calculated for the specific values p = 1 and p = 2
by use of

<p'(z) = A(z) cp(z),

where

00 A.a.
A(z)=i L J.J. I

j~n+l (1-21zAj aj )

Remark. By iterating (23) and using

00

A(k)(O)=(i)k+12k .k! L (A
j
ay+l

j=n+l

(23)

one may of course generate any desired instance of (-iV cp(pJ(O). But we
have not been able to find a closed expression for this.

COROLLARY 3.7. For E(f) = IIfl1 2P the nth radius rn= rn(ll. fp) of the
approximation problem is

r n (II·11 2P)=(-Wcp(pJ(O) foo sPdv(s),
o

00

r n (II·11 2)= L Aj
j=n+l

and

Proof Combine Corollary 3.6 and Proposition 3.4. I
For E(f) = Ilfll P and other standard functionals of the form E(f) =

H( Ilfll) we may derive a rather nice expression for the optimal approxima-
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tion qJN. From Theorem 3.3(a) and Proposition 3.4 it follows that qJN is
optimal if and only if IRg l + ... + IRgn = IRg\ + ... + IRgn and qJ has the
form (14). Again let P denote the projection onto the linear span of
{g,}7=1. Since {Cl/2g,}7~1 is an orthonormal basis in C 1/2P one finds,
any f in the domain of C -1/2,

n

qJsN(f) = L (J, g;) ACg;
;~1

n

=AC 1/2 L (C- 1/2j, C 1
/
2gJ C 1

/
2g;

i=l

where Q is the projection onto c1/2p= span {17;}7= 1 (cf. the proof of
Proposition 3.4). Here the equation qJsN(f) = A C 1/2QC -1/2fis independent
of the choice of {g;} 7~ I. Consequently A C 1/2QC -1/2 extends to a bounded
operator in :Ie and this operator is the unique optimal value. of qJN.
Finally, using g; = g; =A;-1/2A*f and the very definition off, one finds

n

(qJN)oPtimal (f) = L (J, A: 1/2A*fJ AC(A;-1/2A*f)
;=1

(

n \

= ;~1 A*f ®f) (f)

= Ctl f; (8)f) Af

Thus (qJN)OPt is the composition of A and an orthogonal projection of
rank n.

Finally, in closing this paper, we turn to the problem of adaptive versus
non-adaptive information. When N is (adaptive) information let Ny, y E IR",
be the non-adaptive information given by g; = g;(y).

The heart of the very elegant proof in [13 ] that "adaption doesn't help"
is the equality f-lY(N) = f-lY(Ny ) between conditional measures. It is.apparent
from (11) that this does not hold generally for non-Gaussian measures f-l"c.
Nevertheless we have the following.

THEOREM 3.8. For any allowable error functional E and any infor­
mation N

r(N) ~ inf r(Ny).
y E IRn

(24)
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Further if E is a standard error functional of the form E(f) = H(llfll),
r(N) = rn if and only if

IRg 1(y) + ... + IRgn(y) = IRgl + ... + IRgn (25)

holds for almost all y in W.

Proof Using the results of Proposition 3.1, Lemma 3.2, and Theorem
3.3 compute

e( <p, N) = J£' E(Af - <pNf) dJl(f)

= tn E(Af - <p(y)) dJlY(f) dJl~(Y)

=f foo WAy)f E(Af-<p(y))
Rn 0 £'

x dJlm(y),ss(s-I/2y)(f) dv(s) dy

~ f foo Ws(Y) f E(Af)
Rn 0 £'

;;?; inf foo J E(Af) dJlss(y)(f) dv(s)
yE R" 0 £'

This proves (24).
For the final case to be considered it can be read of the above string of

calculations that r(N) = rn if and only if

<p(y)=Am(y)

rn= r(Ny)

(26a)

(26b)

holds for almost all yin W. Combining (26b) with Proposition 3.4 one gets
(25). The optimal algorithm is given by

n

<p((Y;)7~1)= L Yi ACgi(Yl, ..., Yi-d
i=1

for almost all y = (yJ7= 1 in IRn. I
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